Tuesday, February 2, 2010

Reasons For Avoiding Wheat Part 1

Wheaty Indiscretions: What Happens to Wheat From Seed to Storage

By Jen Allbritton, Certified Nutritionist

Wheat--America’s grain of choice. Its hardy, glutenous consistency makes it practical for a variety of foodstuffs--cakes, breads, pastas, cookies, bagels, pretzels and cereals that have been puffed, shredded and shaped. This ancient grain can actually be very nutritious when it is grown and prepared in the appropriate manner. Unfortunately, the indiscretions inflicted by our modern farming techniques and milling practices have dramatically reduced the quality of the commercial wheat berry and the flour it makes. You might think, "Wheat is wheat--what can they do that makes commercial varieties so bad?" Listen up, because you are in for a surprise!

It was the cultivation of grains--members of the grass family--that made civilization possible.1 Since wheat is one of the oldest known grains, its cultivation is as old as civilization itself. Some accounts suggest that mankind has used this wholesome food since 10,000 to 15,000 years BC.2 Upon opening Egyptian tombs archeologists discovered large earthenware jars full of wheat to "sustain" the Pharaohs in the afterlife. Hippocrates, the father of medicine, was said to recommend stone-ground flour for its beneficial effects on the digestive tract. Once humans figured out how to grind wheat, they discovered that when water is added it can be naturally fermented and turned into beer and expandable dough.2

Botonists have identified almost 30,000 varieties of wheat, which are assigned to one of several classifications according to their planting schedule and nutrient composition3--hard red winter, hard red spring, soft red winter, durum, hard white and soft white. Spring wheat is planted in the spring, and winter wheat is planted in the fall and shoots up the next spring to mature that summer. Soft, hard, and durum (even harder) wheats are classified according to the strength of their kernel. This strength is a function of the protein-to-starch ratio in the endosperm (the starchy middle layer of the seed). Hard wheats contain less starch, leaving a stronger protein matrix.3

With the advent of modern farming, the number of varieties of wheat in common use has been drastically reduced. Today, just a few varieties account for 90 percent of the wheat grown in the world.1

When grown in well-nourished, fertile soil, whole wheat is rich in vitamin E and B complex, many minerals, including calcium and iron, as well as omega-3 fatty acids. Proper growing and milling methods are necessary to preserve these nutrients and prevent rancidity. Unfortunately, due to the indiscretions inflicted by contemporary farming and processing on modern wheat, many people have become intolerant or even allergic to this nourishing grain. These indiscretions include depletion of the soil through the use of chemical fertilizers, pesticides and other chemicals, high-heat milling, refining and improper preparation, such as extrusion.1

Rather than focus on soil fertility and careful selection of seed to produce varieties tailored to a particular micro-climate, modern farming practices use high-tech methods to deal with pests and disease, leading to overdependence on chemicals and other substances.

It Starts with the Seed

Even before they are planted in the ground, wheat seeds receive an application of fungicides and insecticides. Fungicides are used to control diseases of seeds and seedlings; insecticides are used to control insect pests, killing them as they feed on the seed or emerging seedling.7 Seed companies often use mixtures of different seed-treatment fungicides or insecticides to control a broader spectrum of seed pests.8

Pesticides and Fertilizers

Some of the main chemicals (insecticides, herbicides and fungicides) used on commercial wheat crops are disulfoton (Di-syston), methyl parathion, chlorpyrifos, dimethoate, diamba and glyphosate.9

Although all these chemicals are approved for use and considered safe, consumers are wise to reduce their exposure as much as possible. Besides contributing to the overall toxic load in our bodies, these chemicals increase our susceptibility to neurotoxic diseases as well as to conditions like cancer.10

Many of these pesticides function as xenoestrogens, foreign estrogen that can reap havoc with our hormone balance and may be a contributing factor to a number of health conditions. For example, researchers speculate these estrogen-mimicking chemicals are one of the contributing factors to boys and girls entering puberty at earlier and earlier ages. They have also been linked to abnormalities and hormone-related cancers including fibrocystic breast disease, breast cancer and endometriosis.13

No comments: